Negativity of Lyapunov Exponents and Convergence of Generic Random Polynomial Dynamical Systems and Random Relaxed Newton’s Methods
نویسندگان
چکیده
We investigate i.i.d. random complex dynamical systems generated by probability measures on finite unions of the loci holomorphic families rational maps Riemann sphere $$\hat{\mathbb {C}}.$$ show that under certain conditions families, for a generic system, (especially, polynomial system,) all but countably many initial values $$z\in \hat{\mathbb {C}}$$ , almost every sequence $$\gamma =(\gamma _{1}, \gamma _{2},\ldots )$$ Lyapunov exponent $$ at z is negative. Also, we value orbit Dirac measure iteration dual map transition operator tends to periodic cycle in space . Note these are new phenomena dynamics which cannot hold deterministic systems. apply above theory and results finding roots any relaxed Newton’s methods g degree two or more, \mathbb {C}$$ not root $$g'$$ starting with surely, virtue effect randomness.
منابع مشابه
investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems
The notion of Lyapunov function plays a key role in design and verification of dynamical systems, as well as hybrid and cyber-physical systems. In this paper, to analyze the asymptotic stability of a dynamical system, we generalize standard Lyapunov functions to relaxed Lyapunov functions (RLFs), by considering higher order Lie derivatives of certain functions along the system’s vector field. F...
متن کاملRandom Logistic Maps and Lyapunov Exponents
We prove that under certain basic regularity conditions, a random iteration of logistic maps converges to a random point attractor when the Lyapunov exponent is negative, and does not converge to a point when the Lyapunov exponent is positive.
متن کاملMetastability, Lyapunov Exponents, Escape Rates, and Topological Entropy in Random Dynamical Systems
We explore the concept of metastability in random dynamical systems, focusing on connections between random Perron–Frobenius operator cocycles and escape rates of random maps, and on topological entropy of random shifts of finite type. The Lyapunov spectrum of the random Perron–Frobenius cocycle and the random adjacency matrix cocycle is used to decompose the random system into two disjoint ran...
متن کاملLyapunov Exponents in Random Boolean Networks
A new order parameter approximation to Random Boolean Networks (RBN) is introduced, based on the concept of Boolean derivative. A statistical argument involving an annealed approximation is used, allowing to measure the order parameter in terms of the statistical properties of a random matrix. Using the same formalism, a Lyapunov exponent is calculated, allowing to provide the onset of damage s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2021
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-04070-6